Role of Material-Driven Fibronectin Fibrillogenesis in Protein Remodeling
نویسندگان
چکیده
Protein remodeling at the cell-material interface is an important phenomenon that should be incorporated into the design of advanced biomaterials for tissue engineering. In this work, we address the relationship between fibronectin (FN) activity at the material interface and remodeling, including proteolytic cascades. To do so, we studied FN adsorption on two chemically similar substrates, poly(ethyl acrylate) (PEA) and poly(methyl acrylate) (PMA), which resulted in different distribution and conformation of the protein at the material interface: FN organized spontaneously upon adsorption on PEA into physiological-like fibrils, through a process called material-driven FN fibrillogenesis. The amount of adsorbed FN and its conformation were investigated in two different coating concentrations (2 and 20 μg/mL). Since FN activity at the material interface determines the initial cellular response, we followed the formation of focal adhesions (vinculin) and subsequent cell signaling by focal adhesion kinase (FAK) expression and its phosphorylation (pFAK). More detailed studies were performed to get further insights into integrin binding by crosslinking and extraction followed by immunofluorescence, as well as protein and gene expression for α5 and αv. To correlate cell adhesion with matrix degradation, gene expression and activity (zymography) of matrix metalloproteinases (MMPs) were measured. Overall, we demonstrated that the material-driven FN fibrillogenesis triggers proteolytic activity: MMP activity was higher on the material-driven FN fibrils, as a compensatory mechanism to the inability of cells to reorganize this FN network.
منابع مشابه
Controlled Assembly of Fibronectin Nanofibrils Triggered by Random Copolymer Chemistry.
Fibronectin fibrillogenesis is the physiological process by which cells elaborate a fibrous FN matrix. Poly(ethyl acrylate), PEA, has been described to induce a similar process upon simple adsorption of fibronectin (FN) from a protein solution-in the absence of cells-leading to the so-called material-driven fibronectin fibrillogenesis. Poly(methyl acrylate), PMA, is a polymer with very similar ...
متن کاملRole of chemical crosslinking in material-driven assembly of fibronectin (nano)networks: 2D surfaces and 3D scaffolds
Poly(ethyl acrylate) (PEA) induces the formation of biomimetic fibronectin (FN) (nano)networks upon simple adsorption from solutions, a process referred to as material-driven FN fibrillogenesis. The ability of PEA to organize FN has been demonstrated in 2D and 2.5D environments, but not as yet in 3D scaffolds, which incorporate three-dimensionality and chemical crosslinkers that may influence i...
متن کاملStudying early stages of fibronectin fibrillogenesis in living cells by atomic force microscopy
Fibronectin (FN) is an extracellular matrix protein that can be assembled by cells into large fibrillar networks, but the dynamics of FN remodeling and the transition through intermediate fibrillar stages are still incompletely understood. Here we have used a combination of fluorescence microscopy and time-lapse atomic force microscopy (AFM) to visualize initial stages of FN fibrillogenesis in ...
متن کاملTGF-β triggers rapid fibrillogenesis via a novel TβRII-dependent fibronectin-trafficking mechanism
Fibronectin (FN) is a critical regulator of extracellular matrix (ECM) remodeling through its availability and stepwise polymerization for fibrillogenesis. Availability of FN is regulated by its synthesis and turnover, and fibrillogenesis is a multistep, integrin-dependent process essential for cell migration, proliferation, and tissue function. Transforming growth factor β (TGF-β) is an establ...
متن کاملFibronectin binding site in type I collagen regulates fibronectin fibril formation
Mov13 fibroblasts, which do not express endogenous alpha 1(I) collagen chains due to a retroviral insertion, were used to study the role of type I collagen in the process of fibronectin fibrillogenesis. While Mov13 cells produced a sparse matrix containing short fibronectin fibrils, transfection with a wild type pro alpha 1(I) collagen gene resulted in the production of an extensive matrix cont...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2013